

© SightLine Applications, Inc.

EAN-Script Development

PN: EAN-Script-Development

7/29/2020

EAN-Script-Development

© SightLine Applications, Inc. ii

Contact:

Web: sightlineapplications.com

Sales: sales@sightlineapplications.com

Support: support@sightlineapplications.com

Phone: +1 (541) 716-5137

Export Controls

Exports of SightLine products are governed by the US Department of Commerce, Export Administration
Regulations (EAR); classification is ECCN 4A994. The export summary sheet located on the
support/documentation page of our website outlines customers responsibilities and applicable rules.
SightLine Applications takes export controls seriously and works to stay compliant with all export rules.

Copyright and Use Agreement

© Copyright 2019, SightLine Applications, Inc. All Rights reserved. The SightLine Applications name and
logo and all related product and service names, design marks and slogans are the trademarks, and
service marks of SightLine Applications, Inc.

Before loading, downloading, installing, upgrading or using any Licensed Product of SightLine

Applications, Inc., users must read and agree to the license terms and conditions outlined in the End

User License Agreement.

All data, specifications, and information contained in this publication are based on information that we

believe is reliable at the time of printing. SightLine Applications, Inc. reserves the right to make changes

without prior notice.

Alerts

The following notifications are used throughout the document to help identify important safety and
setup information to the user:

 CAUTION: Alerts to a potential hazard that may result in personal injury, or an unsafe practice
that causes damage to the equipment if not avoided.

 IMPORTANT: Identifies crucial information that is important to setup and configuration

procedures.

 Used to emphasize points or reminds the user of something. Supplementary information that aids in
the use or understanding of the equipment or subject that is not critical to system use.

http://sightlineapplications.com/support/software/
mailto:sales@sightlineapplications.com
mailto:support@sightlineapplications.com
http://sightlineapplications.com/marketing/Exports-Summary-v003.pdf
http://sightlineapplications.com/marketing/SightLine-Product-License.pdf
http://sightlineapplications.com/marketing/SightLine-Product-License.pdf

EAN-Script-Development

© SightLine Applications, Inc. iii

Contents

1 Overview ... 5

1.1 Developing On-Board Applications .. 5

1.1.1 Lua ... 5

1.1.2 C/C++ ... 5

1.2 Associated Documents ... 6

1.3 SightLine Software Requirements .. 6

2 Example Scripts ... 6

2.1 Install Directory .. 6

2.2 Script Summary .. 7

3 Basic Setup .. 8

4 Development Environment ... 8

5 Uploading Scripts .. 9

6 Enabling / Disabling Scripts ... 10

6.1 Running Scripts at Startup .. 10

7 Script Interface .. 11

7.1 LUA Script and VideoTrack ... 11

7.2 Creating a Script Function .. 11

8 Key Script Interfaces ... 12

8.1 SLPostAnalyze ... 13

8.2 SLUnload (New in 2.24.xx) ... 13

8.3 SLLoad (New in 2.24.xx), .. 14

8.4 SLNewCmdCallback (New in 2.24.xx) ... 14

9 Troubleshooting .. 15

9.1 Additional Script Debugging ... 15

9.2 Questions and Additional Support ... 16

Appendix A - Lens Control Script .. 16

A1 Overview .. 16

A2 Testing 1500-OEM, 3000-OEM, and 4000-OEM .. 16

A3 Basic Troubleshooting .. 17

A4 3000-OEM Serial Ports .. 17

EAN-Script-Development

© SightLine Applications, Inc. iv

Appendix B - Reticle Selection Script .. 18

B1 Overview ... 18

B2 Configuring Reticle Scripts .. 18

B3 Reticle Color Mapping ... 19

B4 Reticle Index .. 19

List of Figures

Figure 1: Common Windows Layout During Script Development .. 8

Figure 2: External Programs .. 10

Figure 3: User Warning Dialog .. 10

Figure 4: SLADoSnapShot_t Struct in IDD ... 11

Figure 5: Lua Code Segment for Snapshot Command .. 12

Figure 6: SLPostAnalyze Usage from Hello World Example .. 13

Figure 7: SLUnload Usage from Hello World Example .. 14

Figure 8: SLNewCmdCallback Example ... 14

Figure 9: User Error Reporting Script Example ... 15

Figure 10: User Error Reporting Example in Panel Plus .. 15

List of Tables

Table 1: Lua and C/C++ Comparison Table ... 5

Table 2: Example Scripts .. 7

Table 3: Lua Script Interfaces .. 12

Appendix Figures

Figure A1: Apply New Settings Dialog - 3.01.xx and Earlier .. 16

Figure A2: Exit from SLPostAnalyze Function - Multiple Cameras ... 17

Appendix Tables

Table B1: User Configuration Parameters .. 18

Table B2: Reticle Color Mapping ... 19

Table B3: Reticle Indexes .. 19

EAN-Script-Development

© SightLine Applications, Inc. 5

1 Overview

This document provides information and steps for developing and running custom scripts in Lua for the
1500-OEM, 3000-OEM and 4000-OEM video processing boards.

1.1 Developing On-Board Applications

SightLine provides two primary ways for customers to develop their own on-board applications: C/C++
and Lua. Each technology has benefits and costs for solving a problem. It is impossible to prescribe the
right technology for every scenario. This section helps provide general guidelines to assist in
understanding the tradeoffs.

1.1.1 Lua

Lua is recommended for light-weight applications that need to perform simple data processing and
interaction with the onboard video processing application, VideoTrack. Applications such as dynamic
on-screen displays based on telemetry data, or simple command and control from serial ports are good
uses for Lua. Lua scripts are executed in-line with our video processing and cannot be synchronized
with the processing of video frames. Issues such as increased latency and other performance impacts
can arise from Lua scripts that can be very complex.

1.1.2 C/C++

If an application requires complex data handling, frequent real-time access to IO, or should be run in
parallel with VideoTrack, SightLine recommends creating C/C++ applications that can be run on the
ARM processor. Information on creating embedded C/C++ applications can be found in EAN-ARM-
Application-Development.

When reviewing options, contact Support to discuss your application.

Table 1: Lua and C/C++ Comparison Table

Benefits Drawbacks
Lua
• Simple to deploy
• Frame synchronized execution
• Can leverage numerous examples from SightLine or the

internet

Lua
• Not as widely used as C/C++
• Access to IO is complex and difficult
• Real-time debugging is not available
• Networking is not yet supported

C/C++
• Wide acceptance within the embedded programming

industry
• Can be easy to test on a PC before deploying on target

hardware.
• Real-time debugging
• Complete access to IO, file system, etc.
• Can leverage numerous examples from SightLine or the

internet
• Can run in parallel to existing applications
• Portable to numerous platforms

C/C++
• Deploying application to launch at run time can

be error prone (file location, system
permission, etc.)

• Existing setup procedure is complex1 (VMWare,
CCStudio, mapped drives, NFS booting, ...)

1 These tools and procedures are complex but used industry wide with TI embedded systems.

http://sightlineapplications.com/wp-content/uploads/EAN-ARM-Application-Development.pdf
http://sightlineapplications.com/wp-content/uploads/EAN-ARM-Application-Development.pdf
mailto:support@sightlineapplications.com

EAN-Script-Development

© SightLine Applications, Inc. 6

1.2 Associated Documents

EAN-Firmware Upgrade Utility: Outlines the steps for installing and running the Firmware Upgrade
Utility to manage the firmware, parameter, license and other program files critical to hardware and
software functions.

EAN-Startup Guide 1500-OEM: Describes steps for connecting, configuring, and testing the 1500-OEM
video processing board on the 1500-AB accessory board.

EAN-Startup Guide 3000-OEM: Describes steps for connecting, configuring, and testing the 3000-OEM
video processing board on the 3000-IO interface board.

EAN-Startup Guide 4000-OEM: Describes steps for connecting, configuring, and testing the 4000-OEM
video processing board on the 3000-IO interface board.

EAN-Parameter File: Outlines the differences between dynamic and non-dynamic parameter file
settings and how to correctly save them to the board.

EAN-ARM Application Development: Describes how to setup a PC to develop C/C++ applications that
can be run on the ARM processor of the 1500-OEM or the 3000-OEM video processing boards

Interface Command and Control (IDD): Describes the native communications protocol used by the
SightLine Applications product line. The IDD is also available as a PDF download on the Software
Download page.

Panel Plus User Guide: A complete overview of settings and dialog windows located in the Help menu
of the Panel Plus application.

1.3 SightLine Software Requirements

 IMPORTANT: The Panel Plus software version should match the firmware version running on the
board. Firmware and Panel Plus software versions are available on the Software Download page.

2 Example Scripts

The sample applications/scripts installer (SLA ARM Examples) can be downloaded from the SightLine
Applications website. Run the installer before setting up the development environment.

 LUA 5.1 is currently supported.

2.1 Install Directory

The example scripts are intended to serve as a starting point for any script development. A summary of
each example script is shown below. The example scripts are located in C:\SightLine Applications\SLA-
Examples-ARM<<version number>>\SLAScripts\Scripts.

http://sightlineapplications.com/wp-content/uploads/EAN-Firmware-Upgrade-Utility.pdf
http://sightlineapplications.com/wp-content/uploads/EAN-Startup-Guide-1500-OEM.pdf
http://sightlineapplications.com/wp-content/uploads/EAN-Startup-Guide-3000-OEM.pdf
http://sightlineapplications.com/wp-content/uploads/EAN-Startup-Guide-4000-OEM.pdf
http://sightlineapplications.com/wp-content/uploads/EAN-Parameter-File.pdf
http://sightlineapplications.com/wp-content/uploads/EAN-ARM-Application-Development.pdf
http://sightlineapplications.com/idd/
https://sightlineapplications.com/downloads/
https://sightlineapplications.com/downloads/
https://sightlineapplications.com/downloads/
https://sightlineapplications.com/downloads/
https://sightlineapplications.com/example-code/
https://www.lua.org/manual/5.1/manual.html

EAN-Script-Development

© SightLine Applications, Inc. 7

2.2 Script Summary

 Example scripts in the install directory that are used internally are not shown in this list.

• helloworld.lua: Sends a command to VideoTrack to draw a text overlay with the following text: Hello
World. The example program is updated in 2.24 to remove the overlay when the script is unloaded.

• snapshot.lua: Retrieves the current version of SightLine software, starts a track at coordinates
320x,240y, and then takes a snapshot. This example highlights sending commands to the board and
retrieving information.

• gpio.lua: Toggles the GPIO based on MTI detections. See EAN-GPIO-and-I2C for more information
on available GPIO on the 1500-OEM and 3000-OEM. The example highlights how to get telemetry
from the SightLine software, and how to set GPIO from a script.

• lensctrl.lua: A complex script that provides example implementations of auto focus algorithms and
other lens control functions. More details can be found in the Appendix A.

• reticles.lua: Script to generate custom on screen display reticles. There are four different types of
reticles to choose for each camera. Configuration details for reticles script can be found in the
Appendix B.

• telemdata.lua: Sends commands to VideoTrack to display the registration and stabilization
telemetry data as on-screen overlays. It also displays the hex codes for any SightLine command
messages received by the system. This diagnostic tool provides examples of message parsing.

• telemlogger.lua: Similar to telemdata.lua. Instead of sending commands to draw the information
on top of the video, it logs the telemetry data and messages to a file on the microSD card. Since the
path to the microSD card is different from the 1500-OEM and the 3000-OEM, it should be correctly
set in the SLLoad function for the platform being used. Examples are provided for both.
Uncomment the correct one and comment out the others.

• snapFocus.lua: This script uses focus metric and takes a group of snapshots when the focus is
greater than the focus of a past window of frames. It also demonstrates how to kick off a script task
using a SightLine command. Focus metric telemetry must be enabled using
SLACoordinateReportingMode_t. More user information is included in comments in the script.

• klvstatic.lua: This script pushes static metadata values to VideoTrack for KLV output with
streaming video.

• sla_internal.lua: Used during development, this script defines the SightLine Command interfaces.
Used as an API in IDE’s, it is not a script that runs on the target.

Table 2: Example Scripts

Example Scripts Software Version

klvstatic.lua 2.25.07

snapFocus.lua 2.25.07

telemdata.lua 2.25.xx

telemlogger.lua 2.25.xx

helloworld.lua (updated) 2.24.xx

lensctrl.lua 2.24.xx

reticles.lua 2.24.xx

snapshot.lua 2.23.xx

gpio.lua 2.23.xx

http://sightlineapplications.com/wp-content/uploads/EAN-GPIO-and-I2C.pdf

EAN-Script-Development

© SightLine Applications, Inc. 8

3 Basic Setup

The following are the major components of the development and deployment of LUA scripts:

• Any development environment can be used to write scripts. This is usually some form of text editor
or more advance Interface Development Environment (IDE).

• The SightLine Firmware Upgrade Utility is used to upload scripts from the PC to the target
hardware.

• SightLine Panel Plus is used to debug the script through error messages. Panel Plus may also be
used to see custom graphics or other functions that are being executed by the LUA script.

• The Panel Plus External Programs dialog is used to load and unload scripts. Keeping this dialog open
during development allows the developer to easily iterate during script development or try new
scripts.

Figure 1: Common Windows Layout During Script Development

4 Development Environment

Lua scripts can be developed with almost any IDE, however to get syntax highlighting, static analysis,
and autocomplete capabilities, SightLine recommends using the ZeroBrane IDE from ZeroBrane Studio.

 If a script uses another script internally, include the keyword internal in the script file name so it will
not show up in the Panel Plus list of programs.

In this example, the application has been installed to C:\ZeroBraneStudio. The steps below reference
the install location as ZBS.

1. Download and install ZeroBrane IDE from ZeroBrane Studio.

2. Find sla_internal.lua in the installed sample directory /SightLine Applications/SLA-Examples-ARM.
Copy this file to the ZBS\api\lua directory. This will define the API used by SightLine Command and
Control protocol.

3. Open ZeroBrane Studio and choose the menu option project directory: Project » Project Directory »
Choose.

4. Select the directory with the example scripts. C:\SightLine Applications\SLA-Examples-ARM
<<version number>>\SLAScripts\Scripts. (See Install Directory)

5. Choose the menu option Edit » Preferences » Settings:User. This opens a user settings file. Add the
following line to end of the file:

api = {'sla_internal'}

 For SightLine firmware version 2.23.xx add the following line to the end of the file: api = {'sla'}
instead.

PC Development
Environment

Panel Plus

Firmware
Upgrade Utility

External Programs

https://studio.zerobrane.com/

EAN-Script-Development

© SightLine Applications, Inc. 9

6. Restart the ZeroBrane Studio application.

7. The helloworld.lua example can now be edited. To verify autocomplete is working, type ffi.n after
the definition of framecount. It should show new as an option.

 ZeroBrane Studio includes a static analyzer. To use this, go to the menu option Project » Analyze
after editing a file. This is strongly recommended before sending files to the SightLine hardware. If
using a different IDE that doesn't contain a static analyzer, there are other third-party tools
available on the web.

5 Uploading Scripts

User developed scripts can be uploaded to the SightLine hardware using the SLA-Firmware Upgrade
Utility.

1. Click the Find IP Address to get a list of devices on the network.

2. Select the target hardware from the list of devices.

3. From the upgrade utility menu go to File » Program Files » Put Files (PC->SLA) …

4. Select the directory containing the developed Lua scripts or the Example scripts directory. This
uploads all the Lua files (*.lua) from that directory to the SightLine hardware.

 The upgrade utility can also be used to retrieve all the scripts from the hardware.

EAN-Script-Development

© SightLine Applications, Inc. 10

5. Confirm success by checking the Status window.

 Ignore the Restart board alert. Use the Clear button if the Status window is too full of message.

6. Once the scripts are uploaded, they can be enabled (see the next section).

6 Enabling / Disabling Scripts

Scripts can only run if they are enabled. This can
be done through the command and control
protocol using the Set External Program (0x8F)
message. It can also be done from the External
Programs dialog window in Panel Plus, main menu
» File » Programs.

To enable a script, select it in the drop-down
menu and click Send. To disable a script, select
None and click Send.

Figure 2: External Programs

 Sending the message again or clicking the Send button again will cause the scripts to be reloaded.
This is especially useful when debugging or incrementally adding functionality to the script.

6.1 Running Scripts at Startup

To run the script at startup, enable the script and then save the settings to the board, main menu »
Parameters » Save to board.

 IMPORTANT: Problems with scripts show up
as a user warning. When loading scripts, it is
important to monitor the User Warning dialog
window. From the Panel Plus main menu, go
to View » User Warning.

Figure 3: User Warning Dialog

https://sightlineapplications.com/releases/IDD/struct_s_l_a_external_program__t.html

EAN-Script-Development

© SightLine Applications, Inc. 11

7 Script Interface

The script interface to VideoTrack is documented in the IDD. The IDD provides details on structures,
functions and other protocols available through the script interface.

7.1 LUA Script and VideoTrack

It is important that understand that the LUA script is running on the same ARM processor as the
VideoTrack application. It runs in close coordination with the VideoTrack application.

All the major functions in the LUA script are performed in callback functions that are called by
VideoTrack in response to events, for example:

• A new SLA command was received by VideoTrack from Panel Plus:

Forward a copy of this command to the LUA script so it can process the command.

• A new frame of video was acquired/analyzed by VideoTrack:

Inform the LUA script so that it can do an operation, e.g., start recording based on the number of
frames.

The LUA script can also generate SLA commands and send them to the VideoTrack application. For
example, in the autofocus example code the LUA script polls the VideoTrack application to receive the
current focus metric. It does this by calling SLAGetParameters with a FocusStats ID, and then waits for
a response from video track, which contains the focus metric.

It is important to understand that VideoTrack does not respond to some commands in certain cases,
e.g., if the LUA script is controlling a lens through a LUA serial port, then the VideoTrack application will
not respond to a GetLensStatus command (to get focus and zoom position). This is because VideoTrack
application is not currently controlling a lens and cannot respond to the command.

7.2 Creating a Script Function

The following example describes how to create a script function/definition from the IDD.

Example: To add an SLADoSnapshot command to a script, the SLADoSnapShot_t struct is defined in the
IDD as shown in Figure 4.

 This can change with software versions.

Figure 4: SLADoSnapShot_t Struct in IDD

https://sightlineapplications.com/idd/

EAN-Script-Development

© SightLine Applications, Inc. 12

All variable names and valid values are called out in the IDD. Variable names are case sensitive.
Optional values (varies) do not need to be defined.

Message ID 0x60

Byte Offset Name Description

4 frameStep Frame Step – step between frames (e.g. 2 = every other)

5 numFrames
Number of snapshots to take (1 to 254), 255 = continuous, 0 = Stop; Ignored if Snap All

Cameras is used

6 Filename.len String length

7-… Filename.str Base file name of saved files

varies snapAllCameras
Mask of Cameras to Snap (for example, use 0x5 to snap cameras 0 and 2); For multicamera,
only single snap-shot is allowed.

varies shouldScan
When using file auto-numbering, begin file numbering after highest-numbered existing

filename

varies autoFolder Creates new files every maxFiles

varies maxFiles

Max files per folder (2000 is default, 20000 is max). Note: maxFiles is the maximum

number of files per folder, the folder may auto increment sooner under certain conditions

such as snapshots being taken too fast.

Using the above information, the Lua code segment shown in Figure 5 can be created to take a
snapshot.

Figure 5: Lua Code Segment for Snapshot Command

8 Key Script Interfaces

Key script interfaces are shown in Table 3. These methods are called by VideoTrack when executing a
Lua script.

Table 3: Lua Script Interfaces

 IMPORTANT: The SLLoad function is required in all scripts.

Script Interfaces Software Version

SLUnload 2.24.xx

SLLoad 2.24.xx

SLNewCmdCallback 2.24.xx

SLPostAnalyze 2.23.xx

EAN-Script-Development

© SightLine Applications, Inc. 13

8.1 SLPostAnalyze

This function is called by VideoTrack immediately after the analysis of a frame is complete. The analysis
step includes registration, tracking, detection, etc. All scripts should implement this function.

In the helloworld.lua example, this function maintains a global framecount, and then uses it to
determine when to draw Hello World on the video. This function is passed two parameters:

• _vtstate: This is a handle to the VideoTrack context and is needed in calls back to the VideoTrack
program such as ffi.C.SLADrawObject shown in the example.

• cameraIndex: Provides the camera index for which the script is being called. Allows users to take
actions on a specific camera or keep camera specific data separate. On the 3000-OEM, the
SLPostAnalyze function is called for all actively processed cameras.

 On the 3000-OEM the SLPostAnalyze function is called for all actively processed cameras. It is up to
the user to decide how to use the cameraIndex. For example, to draw Hello World for camera two,
return at the top of SLPostAnalyze if the camera index is not equal to 2.

Figure 6: SLPostAnalyze Usage from Hello World Example

8.2 SLUnload (New in 2.24.xx)

This function is called by VideoTrack whenever the script is disabled. This can happen if the board is
shutting down or loading a new script. In the helloworld.lua example, this function removes the
drawObject with id 98 created in SLPostAnalyze. This function is passed only one parameter:

_vtstate: This is a handle to the VideoTrack context and is needed in calls back to the VideoTrack
program such as ffi.C.SLADrawObject shown in the example.

EAN-Script-Development

© SightLine Applications, Inc. 14

Figure 7: SLUnload Usage from Hello World Example

8.3 SLLoad (New in 2.24.xx),

Required by all scripts, this function is called by VideoTrack when loading the script. The _vtstate
parameter is the only parameter passed to this function. This parameter handles the VideoTrack
context and is needed in calls back to the VideoTrack program.

 IMPORTANT: The SLLoad function is required in all scripts.

8.4 SLNewCmdCallback (New in 2.24.xx)

This function is called by VideoTrack when it receives a command. The following four parameters are
passed to this function:

• _vtstate: This is a handle to the VideoTrack context and is needed in calls back to the VideoTrack
program.

• _temp: This is a handle to the structure containing the message data.

• len: This is the length of the message data.

• type: This is the message type.

Figure 8: SLNewCmdCallback Example

EAN-Script-Development

© SightLine Applications, Inc. 15

9 Troubleshooting

Issue Recommendation

Script does not run. From the Panel Plus main menu, go to View » User Warnings and enable the
user warnings. Start the script and monitor the User Warning dialog window
to determine if there are any User Warning preventing the script from
running.

Cannot debug script. Print statements are helpful but require access to the Linux console to see
the output. This requires a serial connection as well as modifying the silent
argument in u-boot. Contact support if you have further questions on how
to do this.

Additionally, debug statements can be drawn to the screen in the same
manner using the helloworld.lua example.

System is sluggish after loading script. From the Panel Plus main menu, go to View » Performance Graphs. Select
Enable System Status and CPU Timing. After a few seconds ARM should
appear in the list of timings. Expand this and look at the time for Post
AnalyzeScript. The times presented are (Average, Minimum, Maximum) over
100 samples in microseconds. If these numbers are very large, e.g., several
thousand microseconds, reevaluate the level of complexity of the script.

64-bit integer data types. Add ULL to the end of 64-bit integer constants, e.g., setTime.utcTime
= 0x54deab2bd7500ULL

 The Lua interpreter can crash without adding this.

9.1 Additional Script Debugging

To display diagnostics messages to the Panel Plus window, use the SightLine warning messages. Refer
to the error_internal.lua script. An example of using error reporting can be found in
hitachi_internal.lua shown in Figure 9.

Figure 9: User Error Reporting Script Example

The output is then displayed in Panel Plus. Right-click in the command area and choose Clear Text to
clear the error of extraneous errors while testing.

Figure 10: User Error Reporting Example in Panel Plus

EAN-Script-Development

© SightLine Applications, Inc. 16

9.2 Questions and Additional Support

For questions and additional support, please contact Technical Support. Additional support
documentation and Engineering Application Notes (EANs) can be found on the Documentation page of
the SightLine Applications website.

Appendix A - Lens Control Script

New in software version 2.24.xx.

A1 Overview

The lens control example script shows users how to implement a basic auto focus algorithm in Lua. It
also shows how to receive lens commands sent from Panel Plus or another user interface and translate
those commands into lens commands such as zoom or focus.

This example also shows how to interface with a serial port from Lua, how to do bitwise operations in
Lua, plus many other helpful functions. This script was not designed to provide an out-of-the box auto
focus algorithm that is plug-and-play for any system. An in-depth knowledge of the lens and camera
system is required to take this from an example and turn it into a working product.

A2 Testing 1500-OEM, 3000-OEM, and 4000-OEM

 IMPORTANT: A Sony or Hitachi camera is needed for this procedure.

The following instructions assume a working knowledge of how to modify and load scripts to the
SightLine hardware.

1. Using Panel Plus, configure the system to stream video from the digital camera.

2. From the main menu go to Configure » Serial Ports and verify that Serial Port 2 is configured as Port
Not Used.

 When using VIN1 on the 3000-OEM see 3000-OEM Serial Ports.

3. If necessary, reconfigure the settings. Changed fields will be highlighted in red. Click Send.

4. To save the configuration to the parameter file, from the Panel Plus main menu » Parameters »
Save to board.

 In 3.01.xx and earlier software versions, saving the Serial Port settings will prompt an additional
dialog window. Some setting changes require the board to be restarted for the settings to take
effect. In the Apply New Settings dialog window, select an option to save the port configuration.

Figure A1: Apply New Settings Dialog - 3.01.xx and Earlier

mailto:support@sightlineapplications.com
https://sightlineapplications.com/documentation/

EAN-Script-Development

© SightLine Applications, Inc. 17

5. Open the Lens tab in Panel Plus and verify that the Lens Type is set to None. If not, make the
change, save parameters, and then restart the system.

6. To switch from the Sony to the Hitachi camera, edit lensctrl.lua to require the
hitachictrl_internal.lua script as shown below.

7. Send the scripts to the 1500-OEM/3000-OEM/4000-OEM, and then load the lensctrl.lua script.

8. Verify basic functionality by using the Narrow or Wide zoom controls.

A3 Basic Troubleshooting

Monitor the user warnings in Panel Plus. If there are no user warnings and the camera is not
responding, try different baud rates. Common baud rates for the Hitachi are 4800 and 9600. Common
baud rates for the Sony are 9600 and 19200.

If the camera is still not responding, contact Technical Support.

A4 3000-OEM Serial Ports

The 3000-OEM serial ports are somewhat different. If the camera is connected on VIN0 no changes
should be needed. If the camera is connected on VIN1, the scripts that open serial ports need to be
updated to port 3 instead of serial port 2 (see sonyctrl_internal.lua or hitachictrl_internal.lua).

If multiple cameras are being processed on the 3000-OEM, add code to exit early from the
SLPostAnalyze function for the non-lens-controlled camera.

Figure A2: Exit from SLPostAnalyze Function - Multiple Cameras

The example script does not check the commanded camera. To create auto focus scripts for two
different cameras, additional code should be added to check the camera in the SLNewCmdCallback
function.

mailto:support@sightlineapplications.com

EAN-Script-Development

© SightLine Applications, Inc. 18

Appendix B - Reticle Selection Script

B1 Overview

Reticle selection scripts can be used to draw overlay reticles on top of the stream and can be
customized for each camera. Two script files are available:

• ReticlesConfig_internal.lua: Configuration parameters to customize the display of reticles.

• Reticles.lua: Adds reticles to the display image. This is the primary script file that should be loaded

to the target to display the reticles on the screen.

B2 Configuring Reticle Scripts

 IMPORTANT: Make sure to edit reticlesConfig_internal.lua with a text editor before uploading
reticles.lua to the hardware.

Table B1: User Configuration Parameters

Parameter Description

CAM<X>_RETICLE_INDEX Reticle to draw for camera with index X. See Reticle index section for available
options.

CAM<X>_FIELD_OF_VIEW Field of view of camera with index X (degrees).

CAM<X>_CIRCLE_DEGREE Diameter of circle (degree) of camera with index X.

CAM<X>_CENTER_CIRCLE_RADIUS Radius of the center point (circle) of camera with index X, default is 2.

CAM<X>_COLOR_FOREGROUND Foreground color (Color 1) to draw for camera with index X. Check Reticle Color
mapping section for options.

CAM<X>_COLOR_BACKGROUND Background color (Color 2) to draw for camera with index X. Check Reticle color
mapping section for options.

Example setting for Camera 1:

CAM1_RETICLE_INDEX = 2

 – set camera 1 to use reticle with index 2

CAM1_COLOR_FOREGROUND = 13

 – set camera 1 foreground color as yellow

CAM1_COLOR_BACKGROUND = 12

 – set camera 1 background color to orange

CAM1_FIELD_OF_VIEW = 50

 – set camera 1 field of view to 50 degrees

CAM1_CIRCLE_DEGREE = 10

 – set camera 1 field of view to 10 degrees

CAM1_CENTER_CIRCLE_RADIUS = 2

 – set camera 1 center point radius to 2

Field of View: Field of view of camera (degrees) is used to calculate the size of lines used to draw the
overlays.

Circle Degree: Diameter of Circle (degree) relative to the field of view.

Center Circle Radius: Center point used in some reticles. Diameter of the circle in degrees.

EAN-Script-Development

© SightLine Applications, Inc. 19

B3 Reticle Color Mapping

Reticle color mapping to be used for background and foreground color settings in the configuration
file.

Table B2: Reticle Color Mapping

Color Value Color Value

WHITE 0 DARK BLUE 7

BLACK 1 LIGHT GREEN 8

LIGHT GRAY 2 GREEN 9

GRAY 3 DARK GREEN 10

DARK GRAY 4 RED 11

LIGHT BLUE 5 ORANGE 12

BLUE 6 YELLOW 13

B4 Reticle Index

There are four different types of reticles available now with index ranging from 0 to 3. Each camera
index is assigned a single reticle. To choose a different reticle for a certain camera change
corresponding camera reticle index. For example, to change camera 2 to use reticle with index 0
change CAM2_RETICLE_INDEX = 0. All the reticles will be drawn with the same color combination
based on COLOR_TO_DRAW value.

Table B3: Reticle Indexes

Reticle Index Picture Reticle Index Picture

0

2

1

3

	1 Overview
	1.1 Developing On-Board Applications
	1.1.1 Lua
	1.1.2 C/C++

	1.2 Associated Documents
	1.3 SightLine Software Requirements

	2 Example Scripts
	2.1 Install Directory
	2.2 Script Summary

	3 Basic Setup
	4 Development Environment
	5 Uploading Scripts
	6 Enabling / Disabling Scripts
	7 Script Interface
	7.1 LUA Script and VideoTrack
	7.2 Creating a Script Function

	8 Key Script Interfaces
	8.1 SLPostAnalyze
	8.2 SLUnload (New in 2.24.xx)
	8.3 SLLoad (New in 2.24.xx),
	8.4 SLNewCmdCallback (New in 2.24.xx)

	9 Troubleshooting
	9.1 Additional Script Debugging
	9.2 Questions and Additional Support

	Appendix A - Lens Control Script
	A1 Overview
	A2 Testing 1500-OEM, 3000-OEM, and 4000-OEM
	A3 Basic Troubleshooting
	A4 3000-OEM Serial Ports

	Appendix B - Reticle Selection Script
	B1 Overview
	B2 Configuring Reticle Scripts
	B3 Reticle Color Mapping
	B4 Reticle Index

